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Abstract
On the basis of the lattice-gas Hubbard model, which is the extension
of the original Hubbard model for a crystal to the lattice-gas system, the
thermodynamic properties of expanded alkali fluids are investigated to clarify
how electron correlation, which causes the metal–non-metal transition in
these fluids, influences their thermodynamic behaviours near the critical point
of the liquid–vapour (LV) transition, and especially at the transition itself.
The thermodynamic potential is calculated in a self-consistent combination
of approximations: the molecular-field approximation for treating random
atomic arrangements and the single-site coherent-potential approximation due
to Yonezawa and Watabe for dealing with electron correlation. The results
calculated for the equation of state are analysed in detail and it is pointed out
that the peculiar behaviour of the LV transition observed for fluid caesium could
be caused by the effects of electron correlation.

1. Introduction

Expanded fluids of metallic elements in the vicinity of the critical point of the liquid–
vapour (LV) transition have been attracting much attention for quite a long time. References
to most of the important work in the research on these systems can be found, for example,
in [1]—in particular in a review paper by Yonezawa and Ogawa [2] in [1].

The main interest in the investigation of these systems is in how the metal–non-metal
(MNM) transition, which should occur in these systems somewhere around the critical point, is
related to the LV transition. There are three main possible mechanisms for the MNM transition:
narrowing and subsequent splitting of electron energy bands with decreasing density (the
Wilson transition); localization of electrons due to electron correlation (the Mott transition);
and localization induced by disorder in the microscopic atomic arrangement (the Anderson
or percolation transition). In actual fluid metals some combinations of these mechanisms act

1 Permanent address: 1-25-29 Sendou, Saiki-Ward, Hiroshima 731-5141, Japan.

0953-8984/02/030287+15$30.00 © 2002 IOP Publishing Ltd Printed in the UK 287

http://stacks.iop.org/cm/14/287


288 I Ishida

to cause the MNM transition. For alkali metals, which are monovalent, the Mott transition
combined with the effect of disorder is considered to occur. For polyvalent metals such as
mercury, the MNM transition is usually accounted for as being caused by a combination of the
Wilson and the Anderson mechanism.

In this paper, we are concerned with the role of the electron correlation in determining
the thermodynamic properties, especially the LV transition of alkali metals. The following
important experimental facts are relevant to the present investigation. The density dependence
of the electrical conductivity already departs from the nearly-free-electron behaviour at
relatively high densities, i.e. ρ � 2ρc where ρc is the critical density [3]. The static
susceptibility data [4] also suggest that the electron correlation becomes essential at high
densities well above ρc. Experiments on the structure factor [5, 6] show that, with decreasing
density from the triple point toward the critical region along the vapour pressure line, the
coordination number, i.e. the number of nearest-neighbour ions, decreases but the nearest-
neighbour distance remains almost constant.

Taking these facts into consideration, a model, which we shall call the lattice-gas Hubbard
model, has been investigated rather extensively (see, for a review, [2]). The model is the
extension of the original Hubbard model for a crystalline system to a lattice-gas system and is
described by the following Hamiltonian:

Ĥ = Ĥa + Ĥe (1)

Ĥa = − 1
2

∑
i �=j

Jij ξiξj (2)

Ĥe = E0

∑
i,σ

niσ ξi +
∑
i �=j,σ

Vij a
†
iσ ajσ ξiξj +

U

2

∑
i,σ

niσ ni−σ ξi (3)

where the random variable ξi at the ith site takes a value 1 or 0 according to whether an ion
occupies the site or not, and therefore

∑
i ξi = N̂a, N̂a being the total number of ions in the

system. The total volume of the system, the total number of sites, and the unit-cell volume of
the underlying regular lattice are denoted by V , N , and v0 respectively; by definition they are
related as V = Nv0. Ĥa is the Hamiltonian for the atomic system, Ĥe the Hamiltonian for the
electronic system, aiσ (a†

iσ , niσ = a
†
iσ aiσ ) the annihilation (creation, number) operator of an

electron with spin σ at the ith site. E0 is an atomic energy of the s orbital, Vij the hopping
integral for hopping between ions at the ith and the j th site and, U the intra-atomic Coulomb
interaction between electrons. The interaction Jij between the ith and the j th ion is supposed
to describe the direct inter-ionic Coulomb interaction as well as the indirect effects due to the
ion–electron and the electron–electron interactions at different sites and possibly the Van der
Waals interactions. The double summations over sites i and j in equations (2) and (3) are
taken over all nearest-neighbour sites (see [2] for more detail).

The electronic properties of expanded alkali fluids were first investigated on the basis
of the lattice-gas Hubbard model by Yonezawa and Watabe [7]. They proposed a single-
site coherent-potential formalism which is the extension of the alloy-analogy approximation
for the original Hubbard model for crystals to the case of the lattice gas, and discussed the
effect of disorder on the Mott–Hubbard transition. The thermodynamic properties of the
lattice-gas Hubbard system were first studied rather extensively by Nara et al [8] on the
basis of a combination of the Takagi method and the Gutzwiller variation method for treating
the statistical averaging of the atomic arrangement and the electron correlation respectively.
They analysed the phase diagrams for this system with a wide range of the model parameters
contained in the Hamiltonian (1) and showed that quite a variety of types of phase diagram
could be obtained. A similar investigation was performed by us (unpublished work referred
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to in [1]) by employing the mean-field approximation for averaging over atomic arrangements
and, to be consistent with the mean-field approximation, the coherent-potential method given
by Yonezawa and Watabe [7] for the electron correlation. It was shown that the different
treatments of the electron correlation as well as the atomic arrangements lead to quite different
results for phase diagrams. These investigations were reviewed and extended somewhat by
Yonezawa and Ogawa [2]; in particular, they presented a simple method for calculating the
ground-state energy of the electron system including the electron-correlation effect in the
coherent-potential approximation, which had been obtained either numerically or by a more
tedious method in the previous work.

After these theoretical studies, around 1980 much detailed experimental work on
the thermodynamic properties of expanded Rb and Cs fluids was done by Hensel and
co-workers [9, 10]. They demonstrated that, in contrast to the case for simple fluids such
as fluid Ar, the LV coexistence curve, i.e. the curve describing the boundary of the coexisting
liquid and vapour phases on the volume versus temperature plane, is strongly asymmetric and
the law of the rectilinear diameter breaks down over a large temperature range for fluid alkalis
such as Rb and Cs. Among recent theoretical research in relation to the above experimental
results, the work most relevant to the present paper is that by Reinaldo-Falagán et al [11, 12].
In the earlier paper [11], using a model which is the single-particle version of the lattice-
gas Hubbard model presented above, and a self-consistent method for determining the ionic
configurations and the electronic energies, they obtained results for the thermodynamic and
electronic properties of expanded alkali fluids which agree qualitatively with the experimental
results. In particular, they concluded that the extreme asymmetry of the coexistence curves
is reproduced by taking account self-consistently of the effect of the local coordination in
determining the free energy per ion. Most recently [12], they modified their previous work
to include the effects of electron correlation. Their theory is an extension of the work by
Nara et al; they employed the Gutzwiller approximation for the lattice-gas Hubbard model
at finite temperatures and determined the electronic and atomic distributions self-consistently
as in their previous work. Their numerical results show that the thermodynamic properties
and the electric conductivity are not essentially affected by electron correlation, and the MNM
transition in their theory is of the classical percolation type rather than the Mott type.

The purpose of this paper is to revisit the lattice-gas Hubbard model in the light of the
recent experimental and theoretical progress and to show that our results, which were obtained
using our old theory, can reproduce the peculiar behaviour of the coexistence curve of fluid
alkalis in the critical region with a proper choice of the model parameters. For convenience of
reference, our formulation is presented in some detail in section 2. In section 3, the relationship
between the MNM and the LV transition is discussed and it is pointed out that a variety of
phase diagrams can be obtained by varying the strength of the electron correlation. Following
these general analyses, the peculiar behaviour of the coexistence curve of fluid Cs is discussed
in the same section. The final section is devoted to our conclusions.

2. Formulation

In this section the formulation employed in this paper is presented. The thermodynamic
potential of the lattice-gas Hubbard model is calculated by adopting the mean-field approxi-
mation for random averaging over atomic configurations and then, to be consistent with the
mean-field approximation, the coherent-potential approximation for calculating the electronic
contribution to the thermodynamic potential. We also present the analytic expressions for the
thermodynamic potential and the equation of state which can be obtained by assuming a simple
form for the electronic density of states for the underlying regular lattice. We shall use these
expressions to analyse the experimental results for fluid Cs in the following section.
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2.1. Thermodynamic potential

The thermodynamic potential Ω of the lattice-gas Hubbard system can be calculated in the
following two steps: the quantum-mechanical trace Tr(e) over electron states is first performed
for a fixed ion configuration {ξi} and then the trace Tr(a) over the ionic configurations is taken.
Thus we obtain

Ω = −PV = −β−1 ln Tr(a) Tr(e) exp{−β(Ĥ − µeN̂e − µaN̂a)}
= − β−1 ln Tr(a) exp{−β(Ĥeff [{ξi}] − µaN̂a)} (4)

in terms of the effective Hamiltonian defined as

Ĥeff [{ξi}] = Ĥa + Ω̂e[{ξi}] (5)

Ω̂e[{ξi}] = −β−1 ln Tr(e) exp{−β(Ĥe − µeN̂e)}. (6)

Here, P is the pressure, β = (kBT )
−1 with kB the Boltzmann constant and T the temperature,

N̂e = ∑
i,σ niσ ξi is the total number operator for the electrons, and µa and µe are the chemical

potentials for the atomic and the electronic system, respectively.
The average total numbers of atoms and electrons are obtained in the standard way as

Na = − ∂Ω
∂µa

(7)

Ne = − ∂Ω
∂µe

. (8)

The chemical potentials µa and µe are determined by solving equations (7) and (8).
The condition for charge neutrality in this system relates these numbers to each other as

follows:

Na = Ne = Nξ (9)

where ξ is the average value of ξi . The atomic volume va, which is the volume per atom, is
expressed in terms of ξ as

va = V/Na = v0/ξ. (10)

The conditions for thermal equilibrium between two phases (1) and (2) with volume V (1)

and V (2) respectively at temperature T are given as usual by

P = P (1)(V (1)) = P (2)(V (2))

µ(1)
e (P, T ) = µ(2)

e (P, T )

µ(1)
a (P, T ) = µ(2)

a (P, T ).

(11)

2.2. Thermodynamic potential in the mean-field approximation

The electronic thermodynamic potential Ω̂e[{ξi}] involved in the effective Hamiltonian (5)
can be expressed in general as the sum over many-body interaction terms by the cumulant
expansion method [14]:

Ω̂e[{ξi}] =
∞∑
n=1

1

n!

∑
i1,i2,...,in

′
ωn(i1, i2, . . . , in)ξi1ξi2 · · · ξin . (12)

where the sum over i1, i2, . . . , in is taken over different sites. Introducing an effective field
acting on the ion on ith site defined by

φ̂eff(i) =
∑

i2,...,in−1

′
ωn(i, i2, . . . , in−1)ξi2ξi3 · · · ξin−1 (13)



Thermodynamic properties of expanded alkali fluids 291

we can rewrite (6) as

Ω̂e[{ξi}] =
∑
i

φ̂eff(i)ξi . (14)

It is noted that the relationship between the asymmetry of the coexistence curve and the
presence of many-body (or state-dependent) effective interactions among ions was discussed
by Goldstein et al (see [13] and references therein). However, as discussed below, a different
cause of the asymmetric coexistence curve is proposed in this paper.

Using the mean-field approximation that the ion on each site in the system feels the same
average field, that is, φmfa

eff = 〈φ̂eff(i)〉mfa, we calculate the grand partition function and the
thermodynamic potential using the following set of equations:

Ξ mfa = exp(−βΩmfa) = Tr(a) exp{−β(Ĥmfa
eff [{ξi}] − µaN̂a)} (15)

Ωmfa = Ωmfa
a + Ωmfa

e (16)

Ωmfa
a

Na
= −1

2
zJ ξ + β−1

{
ln ξ +

1 − ξ

ξ
ln(1 − ξ)

}
− µa (17)

Ωmfa
e = 〈Ω̂e[{ξi}]〉mfa (18)

Ĥmfa
eff [{ξi}] = φmfa

eff

∑
i

ξi +
1

2
NzJξ 2 − ξ 2 ∂

∂ξ

(
Ωmfa

e

ξ

)
(19)

φmfa
eff =

〈
∂Ĥmfa

eff [{ξi}]
∂ξi

〉mfa

= −zJ ξ +
1

N

∂Ωmfa
e

∂ξ
(20)

ξ = 〈ξi〉mfa = [exp{β(φmfa
eff − µa)} + 1]−1 (21)

〈(· · ·)〉mfa = 1

Ξ mfa
Tr(a)(· · ·) exp{−β(Ĥmfa

eff [{ξi}] − µaN̂a)} (22)

where 〈(· · ·)〉mfa is the statistical average of the physical quantity (· · ·) for the atomic system.
z is the number of nearest-neighbour sites. The relation 〈Ĥeff [{ξi}]〉mfa = 〈Ĥmfa

eff [{ξi}]〉mfa is
automatically satisfied. Hereafter, we eliminate the notation ‘mfa’ for brevity. Note that the
thermodynamic potential (16) satisfies the minimum condition:

1

N

∂Ω
∂ξ

= φeff + β−1{ln ξ − ln(1 − ξ)} − µa = 0 (23)

which is nothing but equation (21). From Ω = −PV , the equation of state is obtained as

Pv0 = −1

2
zJ ξ 2 − β−1 ln(1 − ξ) +

ξ 2

N

∂

∂ξ

(
Ωe

ξ

)
. (24)

The above equation without the electronic contributions is the well-known result for the
pressure in the lattice-gas model.

2.3. Electronic thermodynamic potential in the coherent-potential approximation

In order to calculate the thermodynamic potential (18), we need to introduce some
approximations. Firstly, we assume the effect of temperature for the electronic system to
be small and replace Ωe by the value at zero temperature, i.e. E(0)

e − µeNe where E
(0)
e is the

ground-state energy. As is well known, it is convenient to employ the Green function method,
in which E

(0)
e and Ne are expressed in terms of the Green function Gσ(k, E) as follows:

E(0)
e = − 1

πh̄

∑
k,σ

Im
∫ µe

−∞
dx

{
x − 1

2
Σ σ (k, x)

}
Gσ(k, x) (25)
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Ne = − 1

πh̄

∑
k,σ

Im
∫ µe

−∞
dx Gσ (k, x) (26)

where the self-energy Σ σ (k, E) is defined by

Gσ(k, E) = lim
δ→+0

h̄

E + iδ − E(k) − Σ σ (k, E)
(27)

with the band energy for the underlying regular lattice given by

E(k) = E0 +
∑
j ( �=i)

Vij exp{ik · (Rj − Ri )}.

The derivation of this expression is given in the appendix.
Then, in order to calculate the Green function, a further approximation is needed. To be

consistent with the mean-field approximation for atomic configurations, we adopt the single-
site coherent-potential method due to Yonezawa and Watabe [7], which is the extension to the
lattice-gas system of the alloy-analogy approximation of the Hubbard model for crystals. In
this method, the self-energy is assumed to be site diagonal (i.e. independent of k) and the Green
function is determined by solving self-consistently the following set of equations and (27):

Fσ (E) = ξ(1 − n−σ )F
σ (E)

1 + h̄−1Σ
σ
(E)F σ (E)

+
ξn−σF

σ (E)

1 − h̄−1(U − Σ σ (E))F σ (E)
(28)

Fσ (E) = 1

N

∑
k

Gσ(k, E) =
∫ ∞

−∞
dx

h̄D0(x)

E + iδ − x − Σ σ (E)
(29)

where D0(x) is the density of electronic states of the underlying periodic lattice defined by

D0(E) = 1

N

∑
k

δ(E − E(k)). (30)

The function Fσ (E) is the averaged site-diagonal Green function, in terms of which the
averaged density of states per atom for electrons with spin σ , Dσ(E), is given by

Dσ(E) = − 1

πh̄ξ
Im Fσ (E). (31)

The quantity nσ in (28) is the averaged number per atom of electrons with spin σ and can be
written in terms of Dσ(E) as

nσ =
∫ µe

−∞
dx Dσ (x). (32)

Note that the condition n↑ + n↓ = 1 determines the electronic chemical potential (Fermi
energy) µe.

When the parameter ξ is decreased with a fixedU , we obtain the transition (Mott transition)
from a metallic state, for which the density of statesDσ(E) is finite and continuous at the Fermi
energy µe, to a non-metallic state, for which the single band in the metallic state splits into
two at µe.

For the non-magnetic system considered here, where n↑ = n↓, the Green function
Gσ(k, E) and the self-energy Σ σ (E) are independent of σ . Dropping the suffix σ for
simplicity, we can calculate the electronic thermodynamic potential per atom as

Ωe

Ne
= − 2

πh̄ξ
Im

∫ µe

−∞
dx F(x)

(
x − 1

2
Σ (x) − µe

)
. (33)

The factor 2 is due to the degeneracy of spins.
It is possible to calculate numerically all physical quantities from the total thermodynamic

potential (16) which is composed of (17) and (33).



Thermodynamic properties of expanded alkali fluids 293

Figure 1. Calculated densities of states for (a) u = 0.0 and (b) u = 0.425 at: v = 1.0 (- - - -);
v = 4.0 (— · —); v = 5.536 (——); and v = 11.1 (— — —). The energy is scaled by the
half-bandwidth ∆ of the regular lattice and its origin is chosen to be the chemical potential value.

3. Application

3.1. Analytic expression of the thermodynamic potential with a simple density of states for
the regular lattice

In order to understand the essential features of the electronic contributions to the
thermodynamic properties of alkali fluids near their critical points on the basis of the
formulation described in the previous section, it is convenient to have analytic expressions
for thermodynamic quantities. This can be achieved by assuming the density of states for the
underlying regular lattice to take a simple elliptic form:

D0(E) = 2

π∆2

√
∆2 − (E − E0)2 (34)

with ∆ the half-bandwidth. Then, for the non-magnetic system, where n↑ = n↓ = 1/2,
the density of states D(E) becomes symmetric with respect to µe = E0 + U/2 and we can
obtain Ωe in an analytic form [2]. We use % as a scaling parameter for energies. Then, the
scaled electronic thermodynamic potential per atom, ωe ≡ Ωe/(Ne∆), is described by just two
parameters, u = U/∆ and the reduced atomic volume v = va/v0 = 1/ξ .

When the parameter v is increased, that is, the atomic density ρ is decreased, the Mott
transition takes place at the reduced volume vM = 1/u2 as determined by the condition of
D(µe) = 0. The typical results with u = 0.425 are shown for various values of v = 1.0, 4.0,
5.536, and 11.1 in figure 1(b). For comparison the results with u = 0 are also shown. On
increasing v, the density of states with u = 0, which is, at v = 1.0, identical to the one for
the regular lattice (shown by the dashed line in figure 1(a)), gets narrower but remains a single
band. On the other hand, for u = 0.425, the density of states, which is already different from
the one for the regular lattice at v = 1.0 due to the effect of finite u, remains a single band for
v � vM = 5.536, but for v � vM = 5.536 it becomes split into two bands.

For the purpose of investigating how the LV transition is affected by the electron-
correlation effect, we divide ωe into two parts: a part for a system of free electrons with
u = 0, ω(0)

e ; and a part describing the effect of electron correlation, ω(1)
e :

ωe = ω(0)
e + ω(1)

e (35)
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ω(0)
e = − 4

3π
√
v

(36)

ω(1)
e = −3

√
vM

16v
− 1

2
√
vM

+
4

3π
√
v

+ θ(vM − v)
1

24π
√
vM

×
{

3

(
3vM

v
+ 4

)
arccos

√
v

vM
−

(
23 − 2v

vM

) √
vM

v
− 1

}
. (37)

By substituting the above results into (24) we obtain the pressure in reduced units as

Pv0

∆
≡ p = − j

2v2
+ p(0)

e + p(1)
e − t ln

(
1 − 1

v

)
(38)

p(0)
e = − 2

3π
√
v3

(39)

p(1)
e = −3

√
vM

16v2
+

2

3π
√
v3

+ θ(vM − v)
1

24π
√
vM

{
9vM

v2
arccos

√
v

vM
−

(
2

vM
+

7

v

) √
vM

v
− 1

}
(40)

where j = zJ/∆ and t = kBT/∆ is the reduced temperature. p(0)
e andp(1)

e are the contributions
to pressure due to ω

(0)
e and ω

(1)
e respectively.

Correspondingly the atomic chemical potential is obtained from (20) and (23) as

µa/∆ = −t ln(v − 1) + ωe + vpe = −t ln(v − 1) − 1

2
√
vM

− 3
√
vM

8v

+θ(vM − v)
1

4π
√
vM

{(
3vM

v
+ 2

)
arccos

√
v

vM
− 5

√
vM

v
− 1

}
. (41)

The dependence of ω(0)
e on the reduced volume v is due to the ordinary effects of hopping

of free electrons; the bandwidth for the free-electron system is proportional to
√
ξ or to 1/

√
v.

The dependence ofω(1)
e on v differs according to whether the electronic system is in the metallic

state (v � vM) or not (v > vM). However, as the lowest-order term in the expansion of ω(1)
e

with respect to |1 − v/vM| � 1 in the vicinity of the Mott transition is given by

ω(1)
e +

3
√
vM

16v
+

1

2
√
vM

− 4

3π
√
v

� θ(vM − v)
2

15π
√
vM

(
1 − v

vM

)5/2

(42)

the pressure becomes a smooth and continuous function with respect to v. Note that, for
v > vM, ωe is simply given by −1/(2

√
vM) − 3

√
vM/(16v). The v-dependent second term

describes the effects of hopping in this case; the width of each split Hubbard band is due to the
process in which an electron with up (or down) spin hops to a nearest-neighbour site occupied
by an electron with the opposite spin and then returns to the original site, so it is proportional
to ξ or to v−1.

In the analysis presented in the following subsection of possible phase diagrams with
varying strength of the electron correlation u, the dependence of p

(1)
e on volume v plays

an important role. p
(1)
e is a positive quantity and increases gradually as v increases but it

continues to take small values on the metallic side of the Mott transition, that is for v < vM.
In the region of v � vM it increases abruptly and takes a maximum value p(1)

e = (4/3π)4v−1.5
M

at v = (3π/8)2vM � 1.39vM on the non-metallic side of the Mott transition. It is noted that
the above behaviour of p(1)

e arises from the different v-dependences of the hopping effects for
v � vM and v > vM mentioned above.
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Figure 2. The phase diagram in the (u, v) plane. The solid curve describes the calculated critical
atomic volume vc at which the first-order phase transition is obtained. The Mott transition occurs
at the volume vM shown by the dashed curve. A quite distinct phase diagram is obtained for each
region of a ∼ d with varying u, as illustrated in figure 3.

3.2. Classification of phase diagrams

As has been pointed out by Nara et al [8], the lattice-gas Hubbard model can produce quite a
variety of types of phase diagram with varying u. In this section, on the basis of the analytic
expressions presented in the previous section, we present a general analysis of the relationship
between the MNM and the LV transition. In order to see the electronic effects clearly, we
make the analysis assuming j = 0.

The equilibrium conditions for the first-order phase transition between two phases (1)
and (2) with reduced volume v(1) and v(2) respectively at temperature T are obtained as

p(v(1)) = p(v(2)) (43)

µa(v
(1)) = µa(v

(2)). (44)

By using the expressions for p and µa given by (38) and (41) in these relations, it can be shown
that four types of phase diagram are obtained with varying u. The critical values of volume as
a function of u for the first-order phase transitions are shown in figure 2. Note that the curve
for v = vM = 1/u2, shown by the dashed curve in the figure, gives the boundary line for the
Mott transition. In the following, the phase on the high-density side of the Mott transition is
referred to as metallic, while the one on the low-density side is referred to as non-metallic,
although the actual MNM transition may occur at a volume other than vM due to the effect of
disorder combined with the electron correlation. Some further remarks on this point will be
given in the following subsection.

Quite distinct types of phase diagram are obtained for each of the four regions a ∼ d,
as shown in this figure, with varying u. Typical examples of the four types of phase diagram
on the p–v, p–t , and t–v planes with u = 0.3, 0.4, 0.5, and 0.8 are shown in figure 3. The
features of each type of phase diagram are discussed below.

(i) Type a for 0 � u � 0.374. In this region of weak electron correlation there occurs a
single first-order transition from a metallic liquid (ML) phase to a metallic vapour (MV)
phase. Note that, even for the case with no correlation, that is for u = 0, this type of
first-order transition occurs; the critical values for this case can be obtained easily as
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v
(0)
c = 3, t (0)c = 2/(3π

√
3) ≈ 0.123, and p

(0)
c = 2{3 ln(3/2) − 1}/(9π√

3) ≈ 0.008 84.
This ML–MV transition is caused by the feature that, with increasing v, the electronic
energy increases due to band narrowing while the entropy of the atomic configurations
decreases. The effect of the electron correlation in this range is still weak enough and only
causes a slight broad rise of the coexistence curve on the p–v plane in the vicinity of the
Mott transition at v � vM, as is demonstrated in figure 3(a) for the case of u = 0.3. The
corresponding phase diagrams on the p–t and t–v planes are shown in the same figure.

(ii) Type b for 0.374 � u � 0.426. Asu increases into this region another first-order transition
appears around v = vM in addition to the ML–MV transition which remains essentially
unchanged from the one in the weak-correlation region explained above. Two full curves
in region b of figure 2 represent the critical volumes of these first-order transitions. As was
pointed out at the end of the previous subsection, p(1)

e below vM, which is an increasing
function of v, grows larger with increasing u but remains small in region b. Therefore
the ML–MV transition is not affected much by the electron-correlation effects, and the
features of the boundary curves between the coexisting ML and MV phases, as shown
in figure 3(b), are almost the same as those for the weak-correlation case, although the
critical values of volume, temperature, and pressure become slightly larger. The newly
appearing extra phase transition occurs across the Mott transition. As was also mentioned
in the previous subsection, p(1)

e as a function of v increases rather abruptly in the vicinity
of vM and then has a peak at v = (3π/8)2vM. For the values of u in region b the height
of this peak grows so high that, even for temperatures near the critical temperature, an
extra pair of a maximum and a minimum is produced in isotherms of the total pressure
p versus v, as plotted, including the regions of the metastable and unstable states on top
of the one associated with the ML–MV transition. Note, however, that, as the second
partial derivative of (38) with respect to v is not continuous at v = vM, this newly
produced transition is not a usual first-order phase transition. Hence, the critical volume
becomes just vM because limv→vM−0 ∂

2p/∂v2 = ∞. The critical pressure and the critical
temperature are obtained from the following equations: pc = p(vM, tc), (∂p/∂v)vM,tc = 0.
Some further analyses of the phase diagrams in this region will be given in the following
subsection in relation to the peculiar feature of the coexistence curve of fluid Cs.

(iii) Type c for 0.426 � u � 1/
√

2. When u increases further into this region, the two phase
transitions that occurred in region b approach and merge together into a single one between
a ML phase and a non-metallic vapour (NMV) phase across the Mott transition, as shown
in region c of figure 2. The critical volume of this ML–NMV phase transition is given by
5.6 � vc = vM � 2. This type c of the phase diagrams on the p–v, p–t , and t–v planes
is demonstrated with u = 0.5 in figure 3(c).

(iv) Type d for u � 1/
√

2. In this region of strong electron correlation there occurs a single
first-order LV phase transition on the non-metallic side of the Mott transition, as shown
in the region d of figure 2. The Mott transition, which does not accompany a first-order
transition, thus occurs in the liquid phase. The critical volume of the LV transition in
this region is analytically obtained as vc = 2 in the standard way, as applied to the usual
insulating lattice-gas system. Similarly the coexistence curves illustrated for u = 0.8
in figure 3(d) show the same characteristic features as the ones known for the standard
lattice-gas theory.

3.3. Application to fluid Cs

Among the four possible types of phase diagram, we particularly notice type b since a strong
asymmetry appears in the coexistence curve of this type, which is the peculiar feature observed
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Figure 3. Four types of possible phase diagrams in p–v, p–t and t–v planes illustrated with a
typical value of u for each region shown in figure 2. The solid curve shows the coexistence curve.
The dashed curve describes the Mott transition accompanying no change of volume.

in experiments. In figure 4 the coexistence curve calculated with u = 0.425 (vM = 5.536),
shown by the solid curve, is compared with the observed result denoted by the solid circles. The
calculated critical values are given by vc = 3.2, tc = 0.124, and pc = 0.0105. The theoretical
result resembles quite nicely the observed one except for the fact that the coexistence region
around the Mott transition obtained theoretically does not appear in the experimental result.
But it is noted that this discrepancy, which manifests itself rather exaggeratedly in figure 4, is
quite small if we look at the original p versus v curves, as shown in figure 5, from which the
coexistence curves are obtained. The irregularity of the curves around the Mott transition is
very slight and looks rather like a plateau extending from the critical region of the ML–MV
transition up to around vM, so, if this is real, it might be very hard to observe the coexistence
region around vM experimentally.

As already mentioned in the preceding sections, the MNM transition as observed from the
measurements of the electrical conductivity may occur at a density different from the value
for the Mott transition due to the Anderson transition combined with it. As pointed out by
Yonezawa and Watabe [7], the Anderson localization in the lattice-gas Hubbard system can be
caused by the effects of disorder in both atomic and electronic (spin) configurations. It is well
known that the single-site coherent-potential approximation employed in the present theory
cannot deal in principle with localization, but by applying the criterion due to Economou and
Cohen [15] to the Green function presented in the previous section they estimated that, with
increasing v, the Anderson localization of the electronic states near the Fermi level starts to
occur at v = (3 + 2

√
2 + u2)/(1 + 6u2 + u4), which lies somewhat below the critical volume of

the LV transition for u in region b. This result agrees with the observed results for the electrical
conductivity [3].
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Figure 4. The calculated coexistence curve in the p–ρ plane with u = 0.425 denoted by the solid
curve is compared with the experimental result for fluid Cs shown by the solid circles (•).

Figure 5. The calculated isothermal p versus v curves for the same system with u = 0.425 as
shown in figure 4 at various temperatures, t/tc = 0.98, 0.99, 1.00, 1.01, 1.02, 1.03, and 1.04. The
states denoted by the dashed curves are either metastable or unstable.

4. Conclusions

For the purposes of investigating the effects of the electron correlation on the thermodynamic
properties, especially the observed peculiar behaviour of the coexistence curve, of fluid alkalis
in the critical region, we revisited the lattice-gas Hubbard model, investigated extensively
in 1970, in the light of the later important developments during these two decades. We
consider that, although the present theory is based on more simplified approximations than
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those employed in the more recent theories, it is still worth presenting what results are obtained
within the well-defined simple and consistent approximations as employed in the present work
for developing further advanced theories.

It was pointed out that a variety of types of phase diagram can be obtained by varying
the parameter describing the strength of the electron correlation in this model and that, with
a proper choice of this parameter in a certain range of intermediate strength, it is possible to
obtain a phase diagram which reproduces a quite asymmetric coexistence curve resembling
the one observed experimentally. The asymmetry in this theory is caused by the existence of
an extra phase transition associated with the Mott transition in addition to the rather normal LV
transition taken over from the weak-correlation regime. The extra phase transition is caused
by the general change of the dependence on volume of the hopping effects across the Mott
transition. This result, though derived for a simplified model with several approximations,
suggests the possibility of the peculiar behaviour of fluid alkalis such as Cs and Rb in the
critical region being due to the effects of electron correlation.

Among the approximations in this theory, the importance of improving the mean-field
approximation for atomic arrangements has been pointed out by Reinald-Falagán et al [11,12].
They concluded that it is important to treat the local atomic configuration beyond the mean-field
approximation self-consistently with the electronic energy to reproduce the asymmetric feature
of the LV coexistence curve. It would be desirable to improve the present theory by including
the effects beyond the single-site approximations in both atomic and electronic aspects as well
as the effect of finite temperature on the electronic free energy for the more realistic model.

As for the other approximation of assuming the underlying lattice structure in the present
model, it is pointed out that there have been papers by Yonezawa et al [16] and more recently
by Logan [17] in which the Hubbard model is extended to apply to systems with some more
realistic liquid-like structures. In these papers the effects of structural disorder combined
with electron correlation are investigated for the electronic properties of such systems such as
electron localization [16, 17], electric conductivity [17], and magnetic susceptibility [17]. It
would also be interesting to extend the present theory to include the effect of such structural
disorder.
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Appendix. The expression for the electronic internal energy in terms of the Green
function

We define the one-electron retarded Green function in the site representation as

Gσ
ij (t) = −iθ(t)ξi〈[aiσ (t), a†

jσ (0)]+〉(e)ξj (A.1)

where 〈[· · ·]〉(e) is the average over the grand-canonical ensemble for the electronic states under
a fixed distribution of atoms, given explicitly as

〈(· · ·)〉(e) = Tr(e) exp{−β(Ĥe − µeN̂e)}(· · ·)/Ξ̂ (e)[{ξi}] (A.2)
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with Ξ̂ (e)[{ξi}] = exp(−βΩ̂e[{ξi}]) and aiσ (t) (a†
jσ (t)) the annihilation (creation) operator for

an electron with spin σ in the Heisenberg representation, defined as

aiσ (t) = exp(ih̄−1Ĥet)aiσ exp(−ih̄−1Ĥet). (A.3)

Other notation is as usual: θ(t) is the step function, [A,B]+ (=AB+BA) the anti-commutator,
etc. The equation of motion for the Green function Gσ

ij (t) is given by

ih̄
∂Gσ

ij (t)

∂t
= h̄δ(t)δij ξi + E0G

σ
ij (t) +

∑
j ′(�=i)

ξiVij ′Gσ
j ′j (t) + UIσij (t) (A.4)

with

I σij (t) = −iθ(t)ξi〈[aiσ (t)ni−σ (t), a
†
jσ (0)]+〉(e)ξj . (A.5)

On Fourier transforming with respect to t as follows:

Gσ
ij (E) =

∫ ∞

−∞
dt exp(iEt/h̄)Gσ

ij (t) (A.6)

I σij (E) =
∫ ∞

−∞
dt exp(iEt/h̄)I σij (t) (A.7)

and averaging over atomic configurations, the diagonal part (i = j ) of the above equation
becomes

(E − E0)〈Gσ
ii(E)〉(a) −

∑
j ( �=i)

Vij 〈Gσ
ji(E)〉(a) − 〈UIσii (E)〉(a) = h̄ξ (A.8)

where

〈(· · ·)〉(a) = Tr(a) exp{−β(Ĥeff − µaN̂a)}(· · ·)/Ξ (A.9)

with Ξ = exp(−βΩ). In the wavenumber (k) representation, we can rewrite the above
equations as

1

N

∑
k

{(E − E(k))Gσ (k, E) − UIσ (k, E)} = h̄ξ (A.10)

where

〈Gσ
ij (E)〉(a) = 1

N

∑
k

Gσ(k, E) exp{ik · (Ri − Rj )} (A.11)

〈I σij (E)〉(a) = 1

N

∑
k

I σ (k, E) exp{ik · (Ri − Rj )}. (A.12)

Here, Ri is the position vector of the site i. Note that 〈Gσ
ij (E)〉(a) and 〈I σij (E)〉(a) are lattice-

translationally invariant (i.e. they depend only on the difference Ri − Rj ), so they become
diagonal in the k-representation. By introducing the self-energy Σ σ (k, E) defined by the
equation

Gσ(k, E) = h̄

E + iδ − E(k) − Σ σ (k, E)
(A.13)

we obtain the relation expressing I σ (k, E) in terms of Σ σ (k, E) as

1

N

∑
k

UIσ (k, E) = 1

N

∑
k

Σ σ (k, E)Gσ (k, E) + h̄(1 − ξ). (A.14)
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Using the relation

ξi〈a†
iσ ajσ 〉(e)ξj = − 1

πh̄

∫ ∞

−∞
dx f (x) Im Gσ

ij (x) (A.15)

ξi〈niσ ni−σ 〉(e) = − 1

πh̄

∫ ∞

−∞
dx f (x) Im I σii (x) (A.16)

where

f (E) = 1

exp{β(E − µe)} + 1
(A.17)

the electronic internal energy can be expressed as

Êe[{ξi}] = 〈Ĥe〉(e)

= E0

∑
i,σ

〈niσ 〉(e)ξi +
∑
i �=j,σ

Vij 〈a†
iσ ajσ 〉(e)ξiξj +

U

2

∑
i,σ

〈niσ ni−σ 〉(e)ξi

= − 1

πh̄

∑
i,σ

Im
∫ ∞

−∞
dx f (x)

{
E0G

σ
ii(x) +

∑
j ( �=i)

VijG
σ
ij (x) +

U

2
I σii (x)

}
. (A.18)

Averaging over atomic configurations and using the relations derived above, we finally obtain

Ee = 〈Êe[{ξi}]〉(a) = − 1

πh̄

∑
k,σ

Im
∫ ∞

−∞
dx f (x)

{
x − 1

2
Σ σ (k, x)

}
Gσ(k, x). (A.19)

The total number of electrons is similarly given by

Ne = − 1

πh̄

∑
k,σ

Im
∫ ∞

−∞
dx f (x)Gσ (k, x). (A.20)
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